

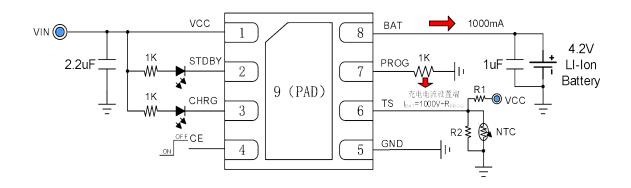
概述

PF4062是一款输入耐压达到30V并且具有过充保护 (OVP) 功能的单节锂离子电池恒流/恒压线性充电器,简单的外部应用电路非常适合便携式设备应用, 适合 USB电源和适配器电源工作。

PF4062采用内部集成PMOSFET架构,采用防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。

PF4062充电截止电压为4.2V, 充电电流可通过外部电阻进行设置。当充电电流降至设定值的 1/5时, PF4062将自动结束充电过程。

当输入电压被移掉后, PF4062自动进入低电流睡眠状态, 电流降至0。

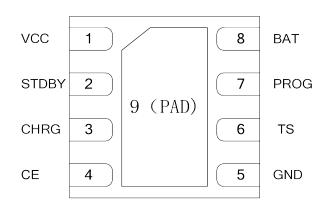

应用

- ◆ 充电座
- ◆ 蓝牙耳机、GPS
- ◆ 手机、PDA、MP3/MP4
- ◆ 数码相机、Mini 音响等便携式设备

典型应用电路图

特性

- ◆ 最高输入电压: 30V
- ◆ 满充电压: 4.2V
- ◆ 过压保护电压: 7.3V
- ◆ 最大充电电流: 1000mA
- ◆ 涓流/恒流/恒压三段式充电
- ◆ 无需 MOSFET、检测电阻器和隔离二极管
- ◆ 智能热调节功能可实现充电速率最大化
- ◆ 智能再充电功能
- ◆ BAT 输入防反接保护
- ◆ 待机模式静态电流: 1.2µA
- ◆ C/5 充电终止
- ◆ 2.9V 涓流充电阈值
- ◆ 充电状态指示
- ◆ 封装形式: DFN2×2_8L


注 1: 充电电流设置电阻最小不能小于0.8ΚΩ。

订货信息

料号	封装	表面印字	包装
PF4062	DFN8_2×2	PF4062	3000颗/卷

引脚排列

DFN2X2 8L

引脚定义

管脚	符号	描述
1	VCC	充电器正端
2	STDBY	充电完成状态指示端
3	CHRG	正在充电状态指示端
4	CE	充电功能使能端,低/悬空时充电,高时不充电
5	GND	电源地
6	TS	外部温度感应引脚,不用时接地
7	PROG	充电电流设置
8	BAT	电池正端
9	PAD	增强散热功能,连接 GND

引脚功能描述

VCC(PIN1): 充电器正端

此管脚的电压为内部电路的工作电源。VCC输入电压必须大于欠压锁定阈值且同时大于BAT电压100mV时,充电才会开始。当VCC输入电压低于欠压锁定阈值或VCC与BAT管脚的电压差小于50mV时,PF4062将进入低功耗的停机模式,此时BAT管脚的消耗电流为0。

STDBY(PIN2): 充电完成状态指示端

当充电结束时,STDBY 管脚处于低电平,充电完成指示灯亮。充电过程中,此灯不亮。

CHRG(PIN3): 充电状态指示端

当充电器向电池充电时,CHRG 引脚被内部开关拉到低电平,表示充电正在进行;当充电结束时,CHRG管脚处于高阻态。

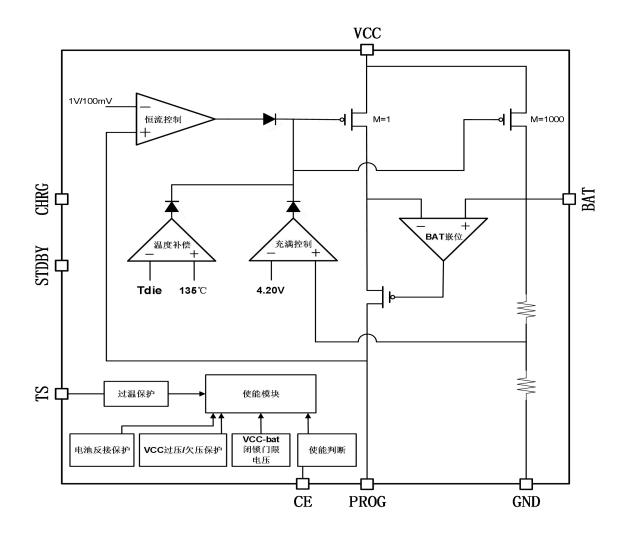
CE(PIN4): 充电功能使能端

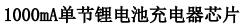
正常使用时,CE端接地或者悬空;关闭芯片,CE接VCC端。

GND(PIN5): 电源地

TS(PIN6):电池温度保护设置端

通过外接一个负温度系数电阻和上拉电阻来设置电池温度保护点。


PROG(PIN7):充电电流设置端


从PROG管脚连接一个电阻到GND可以对充电电流进行设定。设定电阻器和充电电流采用下列公式来计算: I_{BAT}=1000V/R_{PROG},根据需要的充电电流I_{BAT}来确定电阻器R_{PROG}的阻值。在涓流充电阶段,此管脚的电压被调制在0.1V;在恒流充电阶段,此管脚的电压被固定在1V。

BAT(PIN8): 电池正端

将电池的正端连接到此管脚。无VCC接入或者电池充满进入待机状态后,BAT管脚的漏电流小于2uA,BAT管脚向电池提供充电电流和4.2V的充满电压。

内部框架图

极限参数

符号	参数	额定值	单位
VCC	输入电源电压	-0.3~30	V
TS	TS脚电压	-0.3~30	V
CE	CE脚电压	-0.3~30	V
PROG	PROG 脚电压	-0.3~10	V
BAT	BAT 脚电压	-3.8~12	V
CHRG	CHRG 脚电压	-0.3~30	V
STDBY	STDBY脚电压	-0.3~30	V
IBAT	BAT 脚电流	1000	mA
IPROG	PROG 脚电流	1	mA
TOP	工作环境温度	-40~85	$^{\circ}$
TSTG	储存温度	-65~125	$^{\circ}$
ESD	НВМ	4000	V

注 2: 最大极限值是指超出该工作范围芯片可能会损坏。

电气参数 无特殊说明,VCC=5V,Temp=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
VCC	输入电源电压		4.5	5.5	6.5	V
VFLOAT	输出浮充电压	0°C≤TA≤85°C	4.158	4.2	4.242	V
IC	恒流充电电流	RPROG=1K,电流模式	950	1000	1050	mA
ITRIKL	涓流充电电流	VBAT <vtrikl,rprog=1k< td=""><td></td><td>200</td><td></td><td>mA</td></vtrikl,rprog=1k<>		200		mA
IBAT	BAT电流	待机模式(VCC=5V,VBAT=4.2V)		1.2		μA
IDAT	DAT电机	睡眠模式,VCC=0			100	nA
Ibat-reverse	电池反接保护电流	VBAT=-3.8V		80		μA
VTRIKL	涓流充电阈值电压	RPROG=1K,VBAT 上升		3.03		V
VTRHYS	涓流充电迟滞电压	RPROG=1K		80		mV
VUV	VCC欠压保护阈值电压	VCC 上升		3.8		V
VUVHYS	VCC欠压保护迟滞电压	VCC 下降		300		mV
VASD	VCC-VBAT阈值电压	VCC 上升		100		mV
VASD	VUU-VDAI 购诅电压	VCC 下降		50		mV
VPROG	PROG引脚电压	RPROG=1K,电流模式		1.0		V
VCHRG	CHRG引脚输出低电压	ICHRG=5 mA		0.5		V
STDBY	STDBY引脚输出低电压	ISTDBY=5 mA		0.5		V
ΔVRECHG	再充电电池阈值电压	VFLOAT-VRECHRG		150		mV
TRECHG	再充电比较器滤波时间	VBAT 下降		1.2		mS
TTERM	结束比较器滤波时间	IBAT 降至 ICHG/5 以下		1.6		mS
TLIM	限定温度模式结温			135		${\mathbb C}$
OTPH	外置温度过高检测阈值	TS 接NTC 电阻		45%VCC		V
OTPL	外置温度过低检测阈值	TS 接NTC 电阻		80%VCC		V
OVP	VCC过压保护阈值电压	VCC低到高		7.3		V
OVPHYS	VCC过压保护迟滞电压			500		mV

注3: 典型参数值为 25℃条件下测得的标准参数值。

注4: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

芯片功能描述

PF4062是专门为一节锂离子电池或锂聚合物电池而设计的线性充电器,芯片集成功率晶体管,充电电流可以用外部电阻设定,最大持续充电电流可达 1000mA,不需要另加阻流二极管和电流检测电阻。PF4062包含一个漏极开路输出的状态指示端,用于指示正在充电或充电完成。充电时管脚 CHRG输出低电平,表示充电正在进行,充电完成后 CHRG 脚变为高阻态。

如果电池电压低于2.9V,PF4062用小电流对电池进行预充电。当电池电压超过2.9V时,采用恒流模式对电池充电,充电电流由PROG管脚和GND之间的电阻RPROG确定。当电池电压接近4.2V电压时,充电电流逐渐减小,PF4062进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。充电结束阈值是恒流充电电流的20%。

当电池电压降到再充电阈值4.05V以下时,PF4062自动开始新的充电周期。芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在 1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的停机模式,此时电池端消耗的电流小于 2uA。

PF4062内部的智能温度控制电路在芯片的结温超过135℃时自动降低充电电流,这个功能可以使用户最大限度地利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,PF4062会自动减小充电电流。

应用说明

充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/5时,充电过程结束。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的,当PROG引脚电压降至200mV以下的时间超过1.58ms时,充电终止。

智能再充电

在待机模式中,PF4062对BAT引脚电压进行监控,只有当BAT引脚电压低于再充电阈值电压4.05V时(对应电池容量80%~90%),才会开始新的充电循环,重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

增加热调节电阻

降低IC的VCC与BAT两端的压降能够显著减少IC中的功耗。 在热调节时,这具有增加充电电流的作用。实现方式可 以在输入电源与VCC之间串联一个0.5欧姆的电阻或正向导通压降小于0.5V的二极管,从而将一部分功率消耗掉。

充电电流软启动

PF4062内置了软启动路。当一个充电循环被启动时,充电电流将在20uS的时间从零逐渐上升至恒流充电电流。

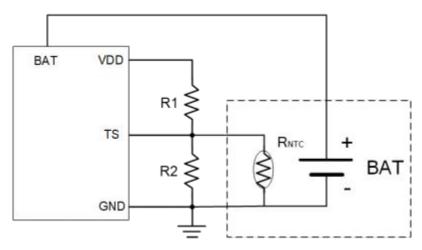
输入电源电压 OVP

PF4062具有输入电源电压OVP的功能,在Vcc输入电压达到7.3V时,芯片OVP保护,此时芯片停机,停止向电池充电,当电源电压再从7.3V降低到约6.8V时,芯片重新进入工作状态。

充电状态指示灯

CHRG 为漏极开路状态指示输出端,当充电器处于充电状态时, CHRG 被下拉为低电平,充电结束后, CHRG 管脚处于高阻态:如果不使用状态指示功能时,将 CHRG 浮空或接地。

智能温度控制


PF4062内部集成了智能温度控制功能,当芯片温度高于135℃时,会自动减小充电电流。该功能允许用户提高给定电路板功率处理能力的上限而没有损坏PF4062的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

手动停机

在充电循环中的任何时刻都能通过置CE端为高电位或去掉RPROG(从而让PROG引脚浮置)来把PF4062置于停机模式。这使得电池漏电流将至0.1uA以下。重新将CE端置为低电位或重新连接RPROG设定电阻器可启动一个新的充电循环。

电池温度保护

为了防止温度过高或者过低对电池造成的损害,PF4062内部集成有电池温度检测电路。电池温度检测是通过测量 TS 管脚的电压实现的,TS 管脚的电压是外置 NTC 热敏电阻和一个电阻分压网络实现的,如下图所示。

PF4062将 TS 管脚的电压同芯片内部的两个阈值 OTPL 和 OTPH 相比较,以确认电池的温度是否超出正常范围。在 PF4062内部,OTPL 被固定在 45%×VDD,OTPH 被固定在 80%×VDD。如果 TS 管脚的电压 VTS <OTPL 或者 VTS >OTPH,则表示电池的温度太高或者太低,充电过程将被暂停;如果 TS管脚的电压 VT S 在 OTPL 和 OTPH 之间,充电周期则继续。

如果将 TS 管脚接地, 电池温度检测功能将被禁止。

电阻 R1、R2、RNTC 的选取: R1 和 R2 的值要根据电池的温度检测范围和热敏电阻 RNTC 的电阻值来确定,举例来设计:

假设设定的电池温度范围为 TL—TH(其中 TL<TH); 电池中使用的是负温度系数的热敏电阻(NTC), RTL是其在温度 TL 时的电阻值, RTH 是其在温度 TH 时的阻值,则 RTL>RTH。

在温度 TL 时, TS 管脚的电压为:
$$V_{TS_L} = \frac{R_2 //R_{TL}}{R_1 + R_2 //R_{TL}} \times VDD$$

在温度 TH 时,TS 管脚的电压为:
$$V_{TS_H} = \frac{R_2 //R_{TH}}{R_1 + R_2 //R_{TH}} \times VDD$$

同时, VTS L = VOTPL = K2 × VDD(K2= 0.8)

VTS_H= VOTPH=
$$K1 \times VDD(K1=0.45)$$

结合上式,可推导出:

$$R_1 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{(R_{TL} - R_{TH})K_1K_2}$$

$$R_2 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{R_{TL}(K_1 - K_1K_2) - R_{TH}(K_2 - K_1K_2)}$$

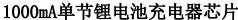
如果电池内部采用的正温度系数的热敏电阻(PTC),则 R1 和 R2 可按照下式来计算:

$$R_1 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{(R_{TH} - R_{TL})K_1K_2}$$

$$R_2 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{R_{TH}(K_1 - K_1K_2) - R_{TL}(K_2 - K_1K_2)}$$

上面的推导中可以看出,待设定的温度范围与电源电压 VDD 无关,仅与电阻 R1 、R2、RTH、RTL 有关,其中 RTH 、RTL 可通过电池查阅相关的电池手册或通过实验获得。

假定电池温度检测范围: 0℃-60℃,选用某品牌热敏电阻 10K(B=3435),在 0℃时, RTL=27.445Kohm; 在 60℃时,RTH=3.024Kohm),代入上述公式,可得到(通过计算,取接近标称值的电阻): R1 = 3.3K Ω : R2 = 27K Ω 。


在实际应用中,若只关注某一端的温度特性,比如过热保护,则 R2可以不用;选用R1即可; R1的推导变得简单,在此不再赘述。

电池反接保护

PF4062内置锂电池反接保护功能,当锂电池反接于 PF4062 输出引脚,PF4062 会停机显示故障状态,此时反接的锂电池漏电电流小于 0.1mA。将反接的电池正确接入,PF4062 自动开始充电循环。反接后的 PF4062 当电池去除后,由于 PF4062 输出端 BAT 管脚电容电位仍为负值,则 PF4062 指示灯不会立刻正常亮,只有正确接入电池可自动激活充电。或者等待 BAT 端电容负电位的电量放光,BAT 端电位大于零伏,PF4062 会显示正常的无电池指示灯状态。反接情况下,过高的电源电压在反接电池电压情形下,芯片压差会超过 10V,故在反接情况下电源电压不宜过高。

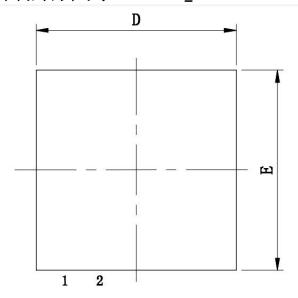
热考虑

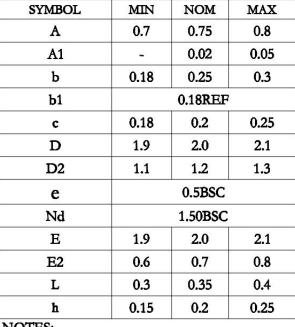
由于 DFN2×2 8L 封装的外形很小,因此需要采用一个热设计精良的 PCB 板布局以最大幅度的增加可使用的

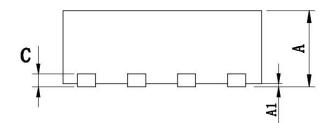
充电电流,这一点非常重要。用于耗散 IC 所产生的热量的散热通路从芯片至引线框架,并通过底部的散热片到达 PCB 板铜面。PCB 板铜面为散热器散热片相连的铜箔面积应尽可能地宽阔,并向外延伸至较大的铜面积,以便将热量散播到周围环境中。至内部或背部铜电路层的通孔在改善充电器的总体热性能方面也是颇有用处的。当进行 PCB 板布局设计时,电路板上与充电器无关的其他热源也是必须予以考虑的,因为它们将对总体升温和最大充电电流有所影响。

充电电流设置

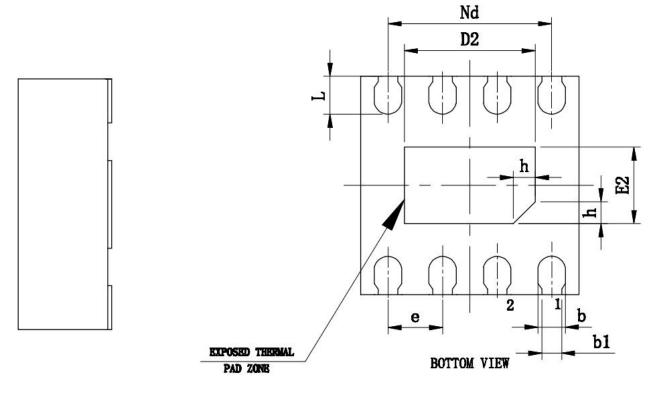
充电电流是采用一个连接在 PROG 引脚与地之间 1%精密电阻器来设定。客户应用中,可根据需求选取合适大小的 RPROG 阻值。RPROG 与充电电流的关系确定可参考下表:


R _{PROG} (K)	IBAT (mA)
3	330
2	500
1.5	660
1.25	800
1	1000


欠压闭锁


一个内部欠压闭锁电路对输入电压进行监控,并在 VCC 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO 电路将使充电器保持在停机模式。如果 UVLO 比较器发生跳变,则在 VCC 升至比电池电压高 100mV 之前充电器将不会退出停机模式。

封装外形尺寸(DFN2X2_8L)



NOTES:

- 1.All DIMENSIONS REFER TO JEDEC STANDARD MO-229 (VCCD-3)
- 2.DIMENSION D DOES NOT INCLUDE MOLD FLASH 3.DIMENSION E1 DOSE NOT INCLUDE MOLD FLASH 4.FLASH OR PROTRUSION SHALL NOT EXCEED
- 0.25mm PER SIDE.

